- Komutatif
- A + B = B+A
- A . B = B . A
- Asosiatif
- ( A + B ) + C = A + ( B+ C )
- ( A . B ) . C = A . ( B . C )
- Distributif
- A . ( B + C ) = ( A . B ) + ( A + C )
- A + ( B . C ) = ( A + B ) . ( A + C )
- Identitas
- A + A = A
- A . A = A
- Negasi
- ( A’ ) = A’
- ( A” ) = A
- De Morgans
- ( A + B )’ = A’ . B’
- ( A . B )’ = A’ + B’
- Tambahan
- 0 + A = A
- 1 . A = A
- 1 + A = 1
- 0 . A = 0
- A’ + A = 1
- A’ . A = 0
- A + A’ . B = A + B
- A . ( A’ + B ) = A . B
- Sederhanakan rangkaian beriku :
- F = ( A + B’ + C’ ) ( A’ + B’C )
- F = A’B + ( CD)’ + AC’ + ACD
Jawab :
1. F = ( A + B’ + C’ ) ( A’ + B’C)
= AA’ + A’B’ + A’C’ + AB’C +B’B'C + B’CC’
= A’B’ + A’C’ + B’C ( 1 + A )
= A’B’ + A’C’ + B’C (√)
2. F = A’B + ( CD)’ + AC’ + ACD
= A’B + C’ + D’ + AC’ + ACD
= A’B + ACD + D’ + C’ ( 1 + A )
= A’B + ACD + C’ + D’
= A’B + ACD + (CD)’ (√)
0 comments:
Post a Comment